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Abstract. The structure of the isovector dipole resonance in neutron-rich calcium isotope, 60Ca, has been
investigated by implementing a careful treatment of the differences of neutron and proton radii in the
continuum random phase approximation (RPA). The calculations have taken into account the current
estimates of the neutron skin. The estimates of the escape widths for direct neutron decay from the
pygmy-dipole resonance (PDR) were shown rather wide, implicating a strong coupling to the continuum.
The width of the giant-dipole resonance (GDR) was evaluated, bringing on a detailed discussion about its
microscopic structure.

PACS. 21.10.Pc Single-particle levels and strength functions – 21.60.-n Nuclear structure models and
methods – 24.30.Cz Giant resonances – 24.30.Gd Other resonances

1 Introduction

The investigation of the nuclei lying far from the β− sta-
bility line has been an interesting and active field of the
nuclear physics in the last two decades. In that region, a
great number of exotic features are observed like halo/skin
formation, intruders levels, new magic numbers and new
kinds of collective excitation, the so-called soft and pygmy
resonances. These observations have forced the review of
successful theoretical tools in nuclei around the β− stabil-
ity valley [1–4].

The description of the microscopic structure of the ex-
otic nuclei is a current topic of study and several recent
works had the concern of describing the giant resonance
(GR) in neutron-rich nuclei. The main questions treated
are the giant-dipole resonance (GDR) behavior and the
appearance of the pygmy-dipole resonance (PDR) in a nu-
cleus with large ratio of neutron-to-proton number (N/Z).
The PDR appears in medium and heavy neutron-rich nu-
clei, and, within the hydrodynamic sense, they are prob-
ably due to oscillation of the neutron excess against the
core (N = Z nucleus). The effects of the neutron excess in
dipole resonances, in neutron-rich nuclei, have been exten-
sively studied in the literature by many groups [5–13], but
a complete understanding about the resonance structure
has not been reached up to now. Some questions about the
nature of GDR and PDR are still kept open. The preser-
vation of the structure of the GDR as the neutron number
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increases, the composition of its decay modes and the need
to go beyond the 1p-1h configuration to explain it [11]
are some of these subjects of theoretical interest. In ad-
dition to these interesting problems on nuclear structure,
the PDR in neutron-rich nuclei plays an important role
in the r-process nucleosynthesis [12,13]. In this topic, the
dipole strength and the widths of the PDR and GDR are
important ingredients to understand the radiative neutron
capture, because they are directly related with the compe-
tition between the direct and statistical mechanisms in the
neutron capture process. In order to perform the studies
on neutron-rich nuclei, we choose to analyze the isovector
dipole resonance in the neutron-rich calcium isotope 60Ca.
This nucleus was not reached experimentally yet, but its
microscopic structure has been investigated recently in dif-
ferent versions of RPA calculations [6–9], relativistic RPA
(RRPA) [10] and phonon damping model (PDM) [11].

In this work we are interested in studying the role of
continuum, as well as the decay width, in the pygmy- and
giant-dipole resonances in the 60Ca nucleus. In these ex-
tremely fragile nuclear systems, close to the neutron drip
line, the neutron density extends far away from the pro-
ton density, forming the “neutron skin”. Thus, to per-
form these continuum calculations, we have implemented
a careful treatment of the differences of neutron and pro-
ton radii in a version of the continuum RPA approach of
ref. [14].

In sect. 2 of this paper, we describe the theoretical
approach used in the calculations. In sect. 3 we present
and comment our results.
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2 Theoretical approach

The continuum effects in our microscopic calculations are
taken into account through a discrete particle-hole basis
which accomodates the single-particle resonance widths,
resulting in a diagonalization of RPA-like complex ma-
trices of standard size [14]. The excited states are im-
plemented in the particle-hole excitation space, and the
open channels correspond to unbound particle-hole states
with complex energies, of which the imaginary parts give
the single-particle escape widths. We assume the nuclear
Hamiltonian of the form H = H0 + 1

2

∑
i6=j Vij with a

mean-field part H0 and a residual two-body force, so that
(Eν−H) | ν〉 = 0 is satisfied for the nuclear excited states
| ν〉 with energy Eν . Using the orthogonal and comple-
mentary projectors Q and P , the particle-hole space can
be splitted into normalized bound (or unbound) particle-
hole states and residual continuum states, respectively.
Then, using the projection operator formalism, we have
the equations

[
Eν−HQQ−HQP

1

Eν + iη −HPP
HPQ

]
Q|ν〉=HQP |χ

†〉 ,

(1)
where |χ†〉 is the appropriate scattering solution of HPP :

[Eν −HPP ] | χ
†〉 = 0. (2)

The relevant continuum effects in P space are taken
by accounting the single-particle resonance in unbound
particle-hole states (taken out for the Q space), that
is reached making the approach of ignoring the two-
body force in P space. In this way, eq. (2) is a
single-particle equation and the continuum self-energy
(H0QP

1
Eν+iη−H0PP

H0PQ) dresses the single-particle reso-

nance with escape effects [15,16]. Thus, we define the com-
plex particle-hole modes | Rn〉 with complex energies ε̂n =
εn −

1
2 i Γ

↑
n which account for continuum escape effects:

[ε̂n − ĤQQ] | Rn〉 = 0 and [ε̂∗n − Ĥ†QQ] | R̃n〉 = 0 , (3)

Q | ν〉 =
∑

n

| Rn〉〈R̃n | HQP | χ
†〉

Eν − ε̂n
, (4)

where ĤQQ = HQQ +HQP
1

Eν+iη−HPP
HPQ and the com-

plex modes satisfy the orthonormalization relation: 〈R̃n′ |
Rn〉 = δnn′ . The matrix element in eq. (4) is an escape am-
plitude related to the imaginary part of ε̂n. The strength

function SF (E) =
∑

n
Γ↑n
2π

|〈R̃n|F̂λ|0〉|
2

(E−εn)2+(Γ↑n/2)2
is calculated by

making the approach that the excited states | ν〉 can be
well described by the Q | ν〉 component. In the particle-

hole matrix element calculation of the 1-body operator F̂λ
of the strength function SF (E), we have assumed the form

F̂JM = ekr
JYJM , (5)

where ek is the nucleon effective charge. For the isovector
dipole transition, we have eν(π) = −

eZ
A ( eNA ).

Table 1. The Woods-Saxon central and spin-orbit parameters
used in the calculations.

VR(r) = V0Rf(r) ; Vls(r) = V0ls

(
h

mπc

)2
1

r
f ′(r)l · s

f(r) = 1

1+e(r−R)/a ; a = 0.60 fm ; V0ls = 6.54MeV

Particle V0R (MeV) R (fm)

ν 54.5 4.30
π 65.5 4.62

The complex particle-hole modes | Rn〉 in eq. (3) are
solved by a diagonalization of the discrete RPA equations
in Q space:

(
A B
−B −A

)(
Xn

Y n

)
= ε̂n

(
Xn

Y n

)
, (6)

where

Aphp′h′ = (ε̂p − εh)δpp′δhh′ + Vph′hp′ ; Bphp′h′ = Vpp′hh′
(7)

and ε̂p (ε̂p = εp −
1
2 i Γp) are the complex energies of the

single-particle resonances [15,16]. Diagonalizing the com-
plex equation (6), we have the complex eigenvectors | Rn〉
(given by complex Xn

ph and Y n
ph amplitudes) and com-

plex eigenvalues ε̂n. Thus, in this discrete particle-hole
subspace, the escape width is associated with the contri-
bution of all allowed unbound particles coupled to their
respective single holes. The partial escape width for each

single hole can be approximated for Γ n↑
h '

∑
p

∣∣∣Xn
ph

∣∣∣
2

Γp,

and this gives a good estimate of the escape width com-
position for the population of several single holes in the
residual nucleus.

The discrete single-particle energies are evaluated by
solving the Schrödinger equation with Woods-Saxon po-
tential, including the centrifugal and Coulomb (as a uni-
formly charged sphere) terms. The positive single-particle
energy and its respective width are calculated in a pro-
jection technique to the continuum discretization ap-
proach [15,16]. The potential parameters of 60Ca were
adjusted following the systematics of the nucleon bind-
ing energy for this nucleus, because there is no experi-
mental data available for this nucleus. 60Ca is expected
to have a small, but positive, neutron energy separation
and a large proton energy separation (Sn ≈ 3.5 MeV and
Sp ≈ 25 MeV). As a consequence, the single-particle po-
tential of the proton should be deeper than the neutron
one. Moreover, since 60Ca is already close to the neu-
tron drip line, the next nucleus with full neutron sub-
shell, 70Ca, should be not stable against neutron emission.
In table 1, the potential parameters are displayed. The
single-particle energies calculated with these parameters
are very similar to those resulting from the self-consistent
Hartree-Fock (HF) calculation with SIII Skyrme interac-
tion [17,18], except for the first neutron excited state,
namely the 1g9/2 level, which was evaluated to be unbound
(ε1g9/2 ' 0.9 MeV), although, in other calculations, it has
been foreseen in a negative energy close to the border of
the potential well. However, these differences do not affect
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Table 2. Parameters of the harmonic-oscillator radial wave functions and residual interaction.

60Ca√
〈r2〉ν (fm) Rν (fm) aν (fm)

√
〈r2〉π (fm) Rπ (fm) aπ (fm)

√
〈r2〉 (fm)

4.03 4.34 0.60 3.62 3.68 0.60 3.90

bν (fm) bπ (fm)

2.09 2.11

C0 (MeV fm3) f in f ex f ′in f ′ex g g′

300.0 −0.002 −2.1 0.76 2.3 0.51 0.70

our results for the calculated escape widths, because this
is a very narrow resonance (Γ1g9/2 < 1.0 keV).

The RPA calculation is done by utilizing the Landau-
Migdal residual interaction:

Vph(
−→r1 ,
−→r2) = C0[f(r1) + f ′(r1)

−→τ1 ·
−→τ2 +

+−→σ1 ·
−→σ2 (g(r1) + g′(r1)

−→τ1 ·
−→τ2)]δ(

−→r1 −
−→r2) , (8)

where f , f ′, g and g′ are dimensionless and density-
dependent parameters:

F (r) = F ex + (F in − F ex)ξ(r) . (9)

The set of the interaction parameters is similar to that
used in refs. [19,20], and it was adjusted to eliminate the
spurious state 1− (see table 2) and to reproduce the first
3− excited state around 2.0 MeV.

We have considered a two-parameter Fermi distribu-
tion to represent the density dependence ξ(r) in eq. (9).
In previous calculations, we had assumed

ξ(r) =
1

1 + e(r−R)/a
, (10)

where R and a are the half-density radius and diffuse-
ness, respectively. Nevertheless, in the present context, it
is more appropriate to separate this function into neutron
and proton parts:

ξ(r) =
N

A
ξν(r) +

Z

A
ξπ(r) , (11)

where each part is given by

ξk(r) =
1

1 + e(r−Rk)/ak
. (12)

Here k = ν(π) for neutron (proton). The Fermi distri-
bution parameters are adjusted to reproduce the neutron
and proton expected root mean square radii for the nu-
cleus considered. It has been observed that the neutron
root mean square radius (

√
〈r2〉ν) becomes larger than the

respective proton radius (
√
〈r2〉π) as the neutron number

increases, keeping constant the proton number. The differ-
ence between those radii, ∆rνπ =

√
〈r2〉ν −

√
〈r2〉π, gives

the measurement of the “neutron skin”. Some estimates
of ∆rνπ have been extracted from experimental charged

radii [21–24]. We perform the Rk and ak adjustment us-
ing the fact that for a two-parameter Fermi distribution
(ρk(r) ∝ ξk(r)) the mean square radius is given by [25]

〈r2〉k =

∫∞
0
ρk(r)r

4dr∫∞
0
ρk(r)r2dr

≈
3

5
R2
k +

7

5
π2a2

k . (13)

In our RPA calculation, we represent the radial single-
particle orbits by harmonic-oscillator radial wave func-
tions Ri(r) which are characterized by a size parameter
b, and we have adopted a two-parameters Fermi density
dependence in the residual interaction. Since the neutron
and proton densities are too different in exotic nuclei, we
must pay special attention with the parameter b. There-
fore, we have performed a careful choice of the parameter b
to analyze the microscopic structure of this exotic nucleus.
In this way, using the radial distribution of the harmonic
oscillator, ρk(r) = ρ0

k

∑
εi≤εF

(2ji + 1)R2
i (r; bk), in order

to calculate 〈r2〉k, we satisfy this requisition by assuming
different size parameters for neutrons and protons,

b2k ≈
4

(3)
4
3

〈r2〉k(Xk)
− 1

3 , (14)

where Xk = N (Z) for k = ν(π) and 〈r2〉k is given by
eq. (13). In table 2, we have displayed the Rk and ak
adjustment based on some recent radii estimates [26–28].

3 Discussion and conclusions

In this section, we present and discuss some results which
we have obtained by using 1p-1h continuum RPA ap-
proach, as described in the previous section, for the
isovector dipole electric transition for 60Ca. The single-
particle(hole) energy levels were taken from the 1s1/2
hole up to 1g7/2 particle orbits. In this case, the core
(N = Z = 20) is formed by neutrons and protons fill-
ing the energy levels up to the sd shell and the neutrons
excess occupying the pf shell above the core. The calcu-
lated strength function SF (E) is displayed in the fig. 1.

In the 40Ca nucleus, the GDR is located around an
energy (∼ 20MeV) above the proton (Sp ≈ 8MeV) and
neutron (Sn ≈ 16MeV) separation energy [29,30]. Con-
sequently, the proton and neutron emission competes by
decay of this mode. Taking into account the neutron-rich
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Fig. 1. The calculated strength function SF (E) by the contin-
uum RPA approach for the E1 excitation in the 60Ca nucleus.
The wide peak at ∼ 8.6 MeV is in the energy interval where
the PDR is expected.

nucleus (60Ca), the theoretical predictions have displayed
that PDR appears below the GDR as a result of neutron
excess. The PDR and GDR are expected to appear below
10 MeV and 15–20 MeV [6–11], respectively. The GDR is
shifted down due to the increase of the mass. However, its
microscopic structure is found to be composed mainly by
the single holes that belong to the most internal structure
of the core, showing that they belong to the same cat-
egory of excitations of the 40Ca. As we have considered
Sn ≈ 3.5 MeV and Sp ≈ 25 MeV for the 60Ca nucleus,
the one-neutron channel is presumed to be open in the
PDR region.

According to previous RPA calculations [6–9], our
calculations also predict a considerable strength in the
energy region below 10 MeV, and this can be observed by
the presence of the broad neutron peak in the low-lying
energy in fig. 1. The broad width is due to the fact that
the energy of the resonance is above the small neutron
separation energy, implicating a strong coupling of the
external neutrons to the continuum region. These low-
lying energy states are the natural candidates for PDR
because they have a dominant contribution of “neutron
skin” (pf shell), in agreement with the hydrodynamic
interpretation. In fig. 1 the wide peak at ∼ 8.6 MeV
is composed by the overlap of three main peaks (see
table 3) exhausting about 8% of the Energy-Weighted
Sum Rule (EWSR), which is composed by transitions
involving neutrons of “skin” (2p and 1f → 3s, 2d and
1g). This aspect becomes more clear when the structure
of the RPA wave function of these peaks is observed.
The wave functions of the states at 8.05 MeV, 8.69 MeV
and 8.94 MeV are composed by the main neutron 1p-1h

configurations:
(
76%

∣∣∣1f−1
5/22d3/2

〉
ν
+14%

∣∣∣2p−1
1/23s1/2

〉
ν

)
,

(
93%

∣∣∣2p−1
1/22d3/2

〉
ν

+ 6%
∣∣∣2p−1

3/22d3/2

〉
ν

)
and

(
88%×

∣∣∣2p−1
3/22d5/2

〉
ν
+9%

∣∣∣1f−1
7/21g9/2

〉
ν

)
, respectively, showing

that each one of these peaks has a dominance of two

Table 3. The evaluated escape widths, and the estimates of
the partial escape widths for each single hole, of the three main
peaks that compose the PDR in∼ 8.6 MeV of excitation energy
(see fig. 1) exhausting about 8% of the EWSR.

εn −
1

2
i Γ ↑

n (MeV) Single hole Γ
n↑
h (MeV)

8.05–i 1.29 (1f5/2)ν 2.26
(2p1/2)ν 0.39
(2p3/2)ν 0.02

8.69–i 1.35 (1f5/2)ν 0.05
(2p1/2)ν 2.65
(2p3/2)ν 0.20

8.94–i 0.40 (1f5/2)ν 0.04
(2p1/2)ν 0.09
(2p3/2)ν 0.71

Table 4. Estimates for the mean values of the escape widths
for the PDR.

εn −
1

2
i Γ

↑

n (MeV) Single hole Γ
n↑
h (MeV)

8.6–i 1.3 (1f5/2)ν 0.7
(2p1/2)ν 1.6
(2p3/2)ν 0.2

1p-1h configurations. These results are in agreement with
the HF + RRPA calculation of ref. [10], where they have
noticed that one-, or at most two-neutron 1p-1h configura-
tions, determine the structure of the low-energy states for
the isovector dipole resonance in 60Ca, in contrast to the
structure of the collective states which are characterized
by a coherent superposition of many 1p-1h excitations.
However, the PDR is composed by the overlap of those
three main states, and the collectivity can be understood
through the participation of all particle-hole components
that belong to this overlap. The estimates of the par-

tial widths Γn↑
h of the main neutrons single-holes that

populate the PDR are presented in table 3. We have also
evaluated an average width for the PDR, calculated as the
weighted average of the widths of the peaks that compose
it (see table 4), the weights being the intensities of each
peak relative to the 8% of the EWSR that they exhaust. In
comparision to these predictions to the PDR, we can note
an apparent lack of neutron escape in the region of energy
around 15 MeV, namely the GDR region, where the peaks
are very narrow (see fig. 1). These peaks are constituted
principally by bound 1p-1h configurations of protons and
their narrow widths are due to the small neutrons am-
plitudes in this energy interval, reflecting an unexpected
suppression of the neutron emission. This result is mainly
due to the change of status of the neutrons single-particle
levels, because those neutrons of the pf shell, that
belonged to the configurations of the particle states in the
40Ca nucleus, have become hole states in the neutron-rich
nucleus, and their contributions for the GDR of the 60Ca
are small (they are mainly responsible for the PDR ap-
pearance). Furthermore, the composition of these narrow
peaks is owed mainly to the bound 1p-1h pairs of protons.
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Fig. 2. Comparison among our results (solid line) with the one
of other works: HF + RPA calculations by Catara et al. [6]
(dotted line), Hamamoto et al. [9] (dashed line) and HF +
RRPA calculations by Vretenar et al. [10] (crosses). Our calcu-
lation is performed by including an arbitrary constant width
Γ = 1.0 MeV, instead of calculated single-particle widths used
in the calculation presented in fig. 1.

This neutron lack can indicate that the GDR decay
should also have more complex contributions than 1p-1h
excitations. The analysis of the underlying structure of
the resonance in the exotic nuclei may help us understand
such disagreements because the GDR could have a more
complex structure than 1p-1h configurations, which could
contribute to the spreading width. To simulate these more
complex structures of the GDR, we display in fig. 2 our
calculation using a constant width Γ = 1.0 MeV, instead
of the single-particle widths used in the calculation pre-
sented in fig. 1, and we compare the results with the ones
of refs. [6,9,10]. Moreover, the two-neutron separation en-
ergy (S2n ≈ 7 MeV) is expected to be much smaller than
Sp in the neutron-rich nuclei [27]. Then the two-neutron
channel is presumed to be open above the PDR and below
the GDR energy, and it is expected to constitute an im-
portant part of GDR decay. As our continuum RPA calcu-
lations have taken into account only 1p-1h configurations,
this two-neutron emission is not considered. Therefore,
the inclusion of 2p-2h configuration in the calculations
would enhance the neutron emission by the GDR.

At present, it may be difficult, or else impossible, to
make the experimental measures of these widths, but it
could be worthwhile doing a theoretical effort for a better
understanding of the microscopic structure of these exotic
nuclei, that would allow us to accomplish some estimates.
In ref. [13] the low-energy dipole strength, in the capture
cross-section calculation, is folded by a Lorentzian curve
of width ΓPDR = ΓGDR (EPDR/EGDR)

2
, and it is added to

the GDR strength to satisfy the classical sum rule for the
total E1 strength. We could use this relation to perform an
evaluation of the ΓGDR. In table 4 we show the mean val-
ues of the energy (8.6 MeV) and escape width (2.6 MeV)
for the PDR. The large value of the escape width could
suggest that it is the main component of its total width, or
ΓPDR = 2.6 MeV. On the other hand, our calculation gives
a narrow GDR centered in 15 MeV. In spite of our calcula-

tion does not contain 2p-2h or more complex excitations,
we can use these results for PDR and GDR, together the
above expression [13] for the ΓPDR, to evaluate the width
ΓGDR. Proceeding this way, we obtain ΓGDR = 7.9MeV.
This result shows that the GDR is a very wide reso-
nance, but with a small 1p-1h escape width, and reinforces
the above statement about the possible complexity of the
GDR structure. The connection of these two different cal-
culations supplies a value for the ΓGDR that is close to the
result obtained in the PDM calculations of ref. [11].

In short, our approach has been describing consistently
the 1p-1h microscopic nature of the PDR excitation mode.
The transitions in this region are composed by 1p-1h ex-
citations involving neutrons of “skin”. The broad peaks
are due to the coupling to the continuum, which is ex-
tremely important in these fragile systems. Furthermore,
we have exhibited an estimate about the direct escape
of neutrons from PDR. Regarding the GDR, due to small
escape width obtained in our calculations, the results indi-
cate that excitations more complicated than 1p-1h should
also be important for the description of its microscopic
structure.

This work was supported in part by Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico (CNPq), Brazil.
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